Nejnavštěvovanější odborný web
pro stavebnictví a technická zařízení budov
estav.tvnový videoportál

Ing. Jakub Šejna, Ph.D.

Archiv článků autora:



17.11.2025
Ing. Jakub Šejna, Ph.D., Ing. Vojtěch Šálek, Ph.D., Ing. Stanislav Šulc, Ph.D., doc. Ing. Kamila Cábová, Ph.D., Ing. Slávek Zbirovský, doc. Ing. Milan Jahoda, Ph.D., prof. Ing. Vít Šmilauer , Ph.D.,DSc., prof. Ing. František Wald, CSc., Ing. Simona Rušarová

Recenzovaný Tento článek uzavírá sérii studií o využití OSB obkladů jako pasivní požární ochrany ocelových konstrukcí. Na základě experimentálních zkoušek v horizontální peci a numerických simulací (CFD a FE) byla prokázána schopnost OSB výrazně zpomalit ohřev oceli a prodloužit dobu do dosažení kritické teploty až o 45 minut. Shrnutí výsledků zdůrazňuje paradoxní, avšak funkční přístup, kdy hořlavý materiál plní ochrannou funkci díky tvorbě zuhelnatělé vrstvy. Diskutovány jsou limity řešení, zejména odpadávání obkladu, vliv spár a citlivost na vlhkost. Současně jsou popsány praktické možnosti využití s ohledem na platné normy a požární kodex. Závěrem článek navrhuje další směřování výzkumu a úvahy o zakotvení materiálů na bázi dřeva do normativního rámce jako alternativního systému pasivní požární ochrany.

10.11.2025
Ing. Jakub Šejna, Ph.D., Ing. Stanislav Šulc, Ph.D., doc. Ing. Kamila Cábová, Ph.D., prof. Ing. Vít Šmilauer, Ph.D, DSc., prof. Ing. František Wald, CSc., Ing. Simona Rušarová

Recenzovaný Třetí část série se zaměřuje na numerické modelování chování ocelového nosníku chráněného OSB obkladem pomocí metody konečných prvků (FE). V první fázi byla provedena tepelná analýza, která detailně popisovala přenos tepla, zahrnula materiálové vlastnosti OSB a zohlednila podmíněné odpadnutí obkladu. Následná mechanická analýza navázala na výsledky tepelné simulace a umožnila posoudit deformace a únosnost ocelového prvku při zvýšených teplotách. Výpočty byly provedeny v prostředí ANSYS Mechanical, přičemž výsledky ukázaly dobrou shodu s experimentálními daty, zejména do okamžiku selhání obkladu. Odchylky se projevily v pozdější fázi, kdy modely nezahrnovaly viskoplastické chování oceli ani explicitní simulaci poruchy obkladu. Studie potvrzuje, že FEA modelování je vhodným nástrojem pro návrh požární ochrany, avšak vyžaduje doplnění o pokročilejší materiálové modely a simulaci dynamického selhání.

3.11.2025
Ing. Jakub Šejna, Ph.D., Ing. Vojtěch Šálek, Ph.D., Ing. Stanislav Šulc, Ph.D., doc. Ing. Kamila Cábová, Ph.D., doc. Ing. Milan Jahoda, Ph.D., prof. Ing. František Wald, CSc., Ing. Simona Rušarová

Recenzovaný Druhá část série představuje komplexní přístup k výzkumu účinnosti OSB obkladů jako pasivní požární ochrany ocelových nosníků. Byla provedena velkorozměrová zkouška v horizontální peci, která ukázala, že OSB obklady významně zpomalují ohřev oceli až do okamžiku selhání obkladu. Jednovrstvé opláštění prodloužilo čas do dosažení kritické teploty přibližně o 17 minut, dvouvrstvé až o 30 minut. Slabinou systému se ukázaly pracovní spáry mezi deskami, kde docházelo k předčasnému selhání. CFD model vytvořený v prostředí FDS dokázal velmi dobře replikovat průběh ohřevu, zejména u nechráněných profilů a chráněných prvků do okamžiku ztráty integrity obkladu. Odchylky nastaly až po jeho odpadnutí, což poukazuje na nutnost dalšího rozšíření modelu o mechanické porušení. Výsledky potvrzují ochranný potenciál OSB obkladů a poskytují základ pro rozvoj návrhových metod zahrnujících stabilitu obkladu, přítomnost spar i predikci selhání obkladu v čase.

27.10.2025
Ing. Jakub Šejna, Ph.D., Ing. Vojtěch Šálek, Ph.D., Ing. Stanislav Šulc, Ph.D., doc. Ing. Kamila Cábová, Ph.D., Ing. Slávek Zbirovský, doc. Ing. Milan Jahoda, Ph.D., prof. Ing. František Wald, CSc., Ing. Simona Rušarová

Recenzovaný Tento článek se zabývá problematikou pasivní požární ochrany ocelových konstrukcí pomocí deskových materiálů na bázi dřeva, konkrétně OSB desek. Ocel je sice nehořlavý materiál, avšak při teplotách nad 400–600 °C rychle ztrácí své mechanické vlastnosti a vyžaduje účinnou ochranu před požárem. Studie ukazuje, že dřevěné obklady, ač samy podléhají hoření, mohou díky tvorbě zuhelnatělé vrstvy paradoxně zpomalit ohřev oceli a prodloužit dobu její odolnosti vůči požáru. V rámci experimentu byly testovány nosníky s různým typem OSB obkladu a výsledky prokázaly, že vícevrstvé opláštění zvyšuje požární odolnost o desítky minut oproti nosníku nechráněnému. Tyto poznatky byly dále ověřeny numerickým modelováním (CFD a FE analýzou), které umožnilo detailně popsat přenos tepla, proces pyrolýzy i mechanickou odezvu. Studie přináší metodický základ pro návrh a posouzení dřevěného opláštění jako alternativního systému požární ochrany ocelových prvků, s důrazem na bezpečnost, architekturu a udržitelnost.

1.9.2025
Ing. Jakub Šejna, Ph.D., doc. Ing. Kamila Cábová, Ph.D., Ing. Lukáš Velebil, Ph.D., Ing. Simona Rušarová, Ing. et. Ing. Kamila Ising

Recenzovaný Článek shrnuje aspekty požární bezpečnosti hybridních konstrukcí využívajících dřevo. Upozorňuje na omezenou použitelnost stávajících norem při kombinaci materiálů s odlišnými tepelnými a mechanickými vlastnostmi a zdůrazňuje nutnost požárně inženýrského přístupu. Na základě případových studií, včetně systému Moen-Wood od japonské společnosti Takenaka, jsou prezentovány přístupy jako vrstvení konstrukcí nebo řízené zuhelnatění. Článek nabízí přehled současných možností návrhu a identifikuje výzvy, jimž čelí česká projektová praxe při návrhu požárně odolných dřevěných konstrukcí vyšších staveb.

19.3.2024
Ing. Jakub Šejna, Ing. Patrik Dobrovolný, prof. Ing. František Wald, CSc.

Recenzovaný Tento článek navazuje na Část 1 zabývající se teoretickými poznatky o částečné požární ochraně ocelových konstrukcí. Zaměřuje se na experimentální práci a numerické modely, doplněné parametrickými studiemi. Experimenty byly provedeny na čtyřech ocelových vzorcích, z nichž každý byl podroben standardní teplotní křivce požáru po dobu 60 min. Vzorky byly testovány s různými tloušťkami požárního nátěru, aby se zjistil jejich vliv na teplotní chování oceli. Numerické modely byly vyvinuty na základě získaných experimentálních dat a sloužily pro parametrické studie, které zkoumaly vliv různých proměnných, jako je délka a tloušťka požární ochrany, na teplotu v místě spojení nosníku a sloupu. Výsledky ukazují, že tloušťka a délka požární ochrany mají významný vliv na teplotní stabilitu ocelových konstrukcí a mohou být použity pro návrh efektivních požárních ochranných opatření.

4.3.2024
Ing. Jakub Šejna, Ing. Patrik Dobrovolný, prof. Ing. František Wald, CSc.

Recenzovaný Tento článek se zaměřuje na částečnou požární ochranu ocelových konstrukcí a poskytuje teoretický přehled současných metod a materiálů používaných v tomto oboru. Jsou představeny různé typy pasivních požárních ochranných systémů, včetně intumescentních nátěrů a jejich vlivu na tepelný přenos mezi chráněnými a nechráněnými částmi konstrukce. Článek se zabývá analytickými a matematickými metodami pro stanovení tepelných vlastností a požární odolnosti použitých materiálů, s důrazem na ty, které podléhají tepelné degradaci. Tento článek poskytuje ucelený pohled na teoretické základy částečné požární ochrany ocelových konstrukcí a nabízí směry pro další výzkum v této oblasti a poskytuje základ pro Část 2: Experimenty, numerické modely a srovnání.



 
 
Reklama